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Scaling laws for extremely strong thermals
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A rich variety of scaling laws for the evolution of convective buoyant thermals generated
by an explosive release of energy has been established. Such events may correspond to a
blast, spark, or volcano eruption. It was found that an occurrence of a particular scaling
law depends on the interplay of many factors, viz., (1) amount of energy released in the
environment, (2) time since the release, and (3) spatial scale of the release domain. The
analytical treatment involves solutions of coupled equations for mass, momentum and
buoyancy (heat) conservation in the Boussinesq and non-Boussinesq approximation. A
model for the entrainment flow that accounts for a strong thermal flux has been proposed.
For the limiting case of a weak thermal and the Boussinesq approximation (low density
contrast between the buoyant thermal and the ambient environment) the celebrated Batch-
elor, Morton, and Turner scalings are recovered. Results have been favorably compared
with limited data available in the literature.
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I. INTRODUCTION

Convective plumes and thermals are ubiquitous environmental features that occur whenever
an isolated density perturbation evolves driven by buoyancy and drag. Such thermals are usually
associated with a rapid release of energy due to natural or anthropogenic events (volcano erup-
tions, solar corona activity, explosions, and industrial accidents; see [1–5] and references therein).
Formally, the generation of thermals is one of the mechanisms which disperses and dissipates
the energy imbalance. Convective thermals have extensively been investigated theoretically and
experimentally, and there is a vast body of literature on this subject [1,6–10].

Since the seminal results of Batchelor, Morton, and Turner (BMT) [11–13] who laid foundations
of the classical convective plume theory, it has been recognized that convective thermals exhibit
remarkable scaling properties. These properties are a signature of the fact that the convective motion
associated with the thermals is determined by only one parameter, viz., the total energy released in
the environment. Mathematically, these scaling properties manifest themselves as power laws for
thermal evolution

Z ∝ Bη

0tγ , R ∝ Bθ
0t δ, (1)

where Z is the elevation of the centroid of the thermal from the source, R is the effective radius of
the thermal, t is the time from the release, and B0 is the so-called total buoyancy [proportional to
the total energy released in the environment E = ρrcpB0/(αg), where ρr , cp, and α are the density,
specific heat, and thermal expansion coefficient of thermal’s substance, respectively, and g is the
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FIG. 1. A rising convective thermal after a nuclear explosion. Photo courtesy of the Los Alamos National
Laboratory, U.S. Department of Energy [15].

gravity acceleration [14]]. The values of the power-law exponents are universal [11–13],

γ = δ = 1/2, η = θ = 1/4, (2)

and independent from other parameters.
Predictions from Eqs. (1) and (2) rest on two assumptions: (1) the Boussinesq approximation for

convective flows (e.g. a small density contrast between the thermal and the ambient environment)
and (2) an assumption for so-called entrainment velocity [16–18], which controls in-thermal flow
fluxes:

ve(t ) = a w(t ), (3)

where a = 0.1–0.25 is an empirical constant and w(t ) = dZ/dt is the rising velocity of the thermal
centroid [11–13].

The scaling from Eqs. (1) and (2) has been extensively verified experimentally, and within
the validity of the Boussinesq approximation, a good agreement with the theory has been found;
see [19,20] and references therein. Beyond the Boussinesq approximation, i.e., when the density
contrast becomes significant, the agreement with prediction, Eq. (2), has become less convincing,
and this necessitates an extension of the original BMT theory to overcome the limitations imposed
by the Boussinesq approximation.

To incorporate non-Boussinesq effects and strong entrainment fluxes the original theory [11–13]
has been modified [21–24]. One of the common modifications of the conventional model has been
the replacement of the equation for entrainment velocity [Eq. (3)] with an expression that explicitly
includes the density contrast (see [21,22] and references therein):

ve(t ) = a[ρ(t )/ρa]1/2w(t ), (4)

where ρ(t ) is the density of the buoyant thermal and ρa is the density of the surrounding ambient
medium.

In some cases this modification has improved the agreement with experiments, but overall
(see [10] and references therein), the theory of non-Boussinesq plumes and thermals is far from
completion and is still an area of active research [21,25,26].

Another line of research of similar phenomena is related to atmospheric sciences. It deals with the
evolution of thermals as a possible mechanism of cloud formation [27,28]. In this case the thermal
is modelled as a large-scale density anomaly and a small density contrast with the aim to predict
its evolution. The weakness of the density contrast justifies the Boussinesq approximation, while
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the large size of the thermal allows us to neglect the contribution of entrainment fluxes (which are
proportional to the surface area and become insignificant in comparison with any volume effects,
such as buoyancy).

As a result, the initial (buoyancy-dominated) stage of the thermal motion is reduced to the
uniform updraft acceleration leading to a different value of scaling exponents than in Eq. (1): γ ≈ 2,
δ ≈ 0 [29]. As the thermal reaches its terminal velocity (when buoyancy is compensated by drag)
the exponent γ reduces to γ ≈ 1. It is worth noting that these values of γ are much higher than given
by the BMT model, and this is a direct consequence of the thermal losing buoyancy via entrainment
fluxes.

The subject of the presented study is somewhat extremely different from the original concept
of the Boussinesq thermal. We assume an energy source that creates a thermal so powerful that
the generated density contrast is of the same order of magnitude as the environmental density. In
other words, due to thermal expansion, the initial density inside the thermal becomes relatively small
(sometimes even negligible). Such a thermal can be conceptualized as a “hot cavity” or “bubble” that
rises upwards driven by buoyancy and rapidly cools down. Figure 1 shows an image of a mushroom
cloud formed by a nuclear detonation. The iconic mushroom cloud begins as a fireball, a luminous
bubble of extremely hot air and vaporized weapon residues. The fireball rises like a hot-air balloon
(hot cavity), pulling air, water vapor, and debris into its base to form the mushroom stem. As the
fireball rises, it cools, losing its glow, and the vaporized material and water vapor condense and
spread, forming the mushroom head [15,30].

The appropriate conditions for the formation of the strong thermal can be fulfilled in a strong
blast, straight after the initial pressure disturbances equilibrate [31]. The created density and thermal
anomaly will dissipate on a much longer timescale (driven by dissipation processes), so the evolution
of such a thermal will initially follow the hot cavity model, switching to the Boussinesq regime at
a much later stage. Conceptually, similar phenomena occur immediately after a rapid release of a
large volume of air in deep water [32].

We propose a simple analytical theory for the evolution of such an “extremely” strong thermal.
Our motivation for this theory stemmed from the analytical results for a convective flow generated
by a point release of energy in an incompressible fluid (spherically symmetrical heat expansion).
According to [33] this flow can be described by a self-similar solution that is amenable to analytical
treatment. An important result of this study is the expression for entrainment velocity of the
expanding buoyant thermal in terms of a heat flux

ve(t ) = β
∂T (r, t )

∂r
, (5)

where β ≡ β(T ) is the thermal diffusivity (in general temperature-dependent), T (r, t ) is the distri-
bution of temperature inside the buoyant thermal, r is the distance to the center of the thermal,
which is assumed to be spherical (see below), and the gradient is taken at the surface of the
thermal.

We emphasize that the expression for entrainment velocity, Eq. (5), is deduced from the analytical
solution of fluid motion without any additional closure assumption. Straight after the rapid energy
release, at the beginning of the cooling phase, the conventional entrainment fluxes are insignificant
(since the vertical velocity of the thermal is small) and the evolution of the hot cavity is mostly
driven by strong thermal fluxes and thermal-induced velocity. As a conceptual model we consider
an initial profile of a hot cavity given by a spherically symmetric distribution of temperature,
T = T0(r) = Ta + Ak (r/R0)−k at t = 0 and ∂T (r)/∂r = 0 at r = 0, where Ta is the ambient temper-
ature, R0 is the initial radius of the buoyant thermal at the initial time t = 0, and Ak and k are positive
constants. By discarding the effect of buoyancy from the shape of the cavity, further evolution of
the system can be described by the three equations for an isobaric, spherically symmetric heat
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conduction process in a moving gas (see [33] and references therein):

∂ρ

∂t
+ 1

r2

∂

∂r
(r2ρVr ) = 0, (6)

ρcp

(
∂T

∂t
+ Vr

∂T

∂r

)
= 1

r2

∂

∂r

(
κr2 ∂T

∂r

)
, (7)

ρT = ρ0T0 = ρaTa = const, (8)

where T0 and ρ0 are the initial values of the temperature and density of the buoyant thermal at
t = 0, respectively, Vr is the velocity of the gas, and κ = κ (T ) is the temperature-dependent heat
conductivity. An important insight into the analytical solutions of these equations comes from
the observation that if we assume Vr = ve, Eq. (5), in the right-hand side of Eq. (7), then, after
substituting ρ ∝ 1/T , the first two equations become identical and can be reduced to one nonlinear
diffusion equation [33]. This justifies using ve from Eq. (5) as a natural scale for the entrainment
velocity at the cooling stage.

In context of the reported study, Eq. (5) reduces to ve(t ) = β(δT/R), where δT = T − Ta is
a characteristic temperature difference (e.g., averaged over thermal’s volume; see below) and the
ambient temperature Ta = const. It is worth mentioning that the scaling for entrainment velocity,
ve ∝ 1/R, has been recently introduced in models of atmospheric thermals [25,26].

We found that the dynamics of strong thermals can be drastically different from weak Boussinesq
thermals. In general, this evolution is affected by the interplay of two processes: (1) entrainment
flux caused by thermal expansion, Eq. (5), and (2) solid-body acceleration of the thermal centroid
(similar to acceleration of a rising bubble in fluid). As a result, scaling laws in Eqs. (1) and (2) are
modified with different power-law exponents. The refined values of these exponents depend on the
initial density contrast between the thermal and the ambient environment. They eventually approach
the values predicted by the BMT model at the long-time limit, when the thermal dissipates its initial
energy and becomes weak. In this regard the scaling laws correspond to the so-called intermediate
asymptotics [34] that may occur during the initial phase of thermal evolution. We validated our
derived scaling numerically as well as with the available simulation and experimental data and
found a reasonable agreement [35].

II. MODEL OF STRONG THERMALS

The motion of a buoyant thermal is governed by conservation equations for mass, momentum,
and thermal flux that follow from equations of fluid dynamics for convective flow [36]. For the
general (non-Boussinesq) case the conservation equations take the form

d

dt

(
4

3
πρR3

)
= 4πρaveR2, (9)

d

dt

(
4

3
πρ∗wR3

)
= 4

3
πg(ρa − ρ)R3 − π

2
CDρaR2w2, (10)

dB

dt
= 0. (11)

Here R ≡ R(t ) is the radius of the thermal (for simplicity its shape is assumed spherical),
w ≡ w(t ) is the vertical velocity of its centroid, ve ≡ ve(t ) is the entrainment velocity of the fluid
from the ambient environment into the thermal, CD is the drag coefficient (introduced to account
for energy dissipation in the system), ρ ≡ ρ(t ) is the average density inside the thermal, ρa = const
is the ambient density, and ρ∗ ≡ ρ∗(t ) = ρ + ρa/3, where the term ρa/3 accounts for the effect of
inertial forces [29,37]. Parameter B is the total buoyancy of the thermal given by the integral of
density (temperature) deficit over the thermal volume

B = (4/3π)αgTaKR3, (12)
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where K ≡ K (t ) is the relative density contrast between the thermal and the ambient environment
given by

K = ρa/ρ − 1 = T/Ta − 1. (13)

Parameter B is proportional to the total energy released in the environment and is conserved dur-
ing the evolution of the buoyant thermal, B = B0 = const. When the thermal entrains surrounding
fluid, its density deficit decreases by dilution in proportion to its volume increase thus keeping the
product (K V ) constant, where V ≡ V (t ) is the volume of the buoyant thermal [36]. Translation
to the Boussinesq approximation corresponds to condition ρ∗ = (4/3)ρ on the left-hand side of
Eq. (10).

The last ingredient of the conventional plume theory is the entrainment velocity, ve. It is usually
assumed that the entrainment velocity is proportional to the thermal’s vertical velocity, Eq. (4).

In the presented study we propose the following two-term model for the entrainment velocity:

ve = ve1 + ve2 = a(ρ/ρa)1/2w + β(T − Ta)/R. (14)

The first term of this equation, ve1, comes directly from the original model, Eq. (4). The second
term, ve2, is deduced from the entrainment velocity driven by thermal flux, Eq. (5), where the term
∂T (r, t )/∂r can be approximated by (T − Ta)/R.

The ratio of the two terms in Eq. (14) can be estimated as

A = ve1

ve2
= awR

β(T − Ta)

(
ρ

ρa

)1/2

. (15)

It can be seen that for small radii of the thermal, R, or a strong temperature contrast, T − Ta, the
contribution of the second term in Eq. (5) can be dominant. As the thermal rises and cools, the first
term becomes more important, and the thermal evolution transitions to the conventional Boussinesq
regime. This will be also confirmed by a numerical solution shown below.

We use Eqs. (8) to (11) and (14) to model the evolution of strong thermals. Indeed, the assumption
about the spherical shape of the thermal is only an approximation. It is known that the initial shape
of the spherical density perturbation will be distorted during its vertical elevation transforming to
an ellipsoidal domain containing a toroidal vortex [29]. The proposed scaling theory disregards this
distortion assuming the scaling laws are defined for some effective parameters of the thermal, viz.,
the position of its centroid and its effective radius.

Furthermore, we assume that the air parcel radius is much less than the height of a homoge-
neous atmosphere which allows us to ignore atmospheric stratification. The change in atmospheric
temperature by altitude and the wind effect were also disregarded [1].

Equations (9)–(11) can be reduced to a nondimensional form

dy

dt
= F1(y), y(t = 0) = 1, (16)

dw

dt
= F2(w, F1), w(t = 0) = 0, (17)

where

F1(y) = 3 ve

R0

(1 + K )2

1 + 2K
y2/3 (18)

and

F2(w, F1) =
[

3gK

1 + K
− 9

8

CD

R0

w2

y1/3
− w

y

(
9

ve

R0
y2/3 + F1

)]
1 + K

4 + K
. (19)

R0 is the initial radius of the buoyant thermal at the initial time t = 0, y = (R/R0)3, K0 = ρa/ρ0 − 1,
and K ≡ K0/y = K0(R0/R)3.
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According to [33] a temperature-dependent thermal diffusivity can be introduced in this model
as

β(T ) = β0(T/T0)ν = β0(ρ0/ρ)ν, (20)

where β0 is the thermal diffusivity at t = 0 and exponent ν is a constant. The value of ν = 0 is the
temperature-independent limit, ν = 1/2 corresponds to an ideal gas, and ν = 5/2 to plasma [38].

The equation for entrainment velocity, Eq. (14), can be reformulated using Eqs. (8), (12), and
(13), y = (R/R0)3 and the temperature-dependent thermal diffusivity, Eq. (20):

ve = ve1 + ve2 = aw

(
1

1 + K

)1/2

+ Q
(1 + K )ν

y4/3
, (21)

where

Q = β0T ν+1
a K0

R0T ν
0

. (22)

Similarly, the ratio of entrainment velocity components in Eq. (15) can be rewritten as

A = ve1

ve2
= a w y4/3

Q(1 + K )1/2+ν
. (23)

III. SCALING LAWS

Equations (8), (16), (17), and (21) form a closed system of equations that can be solved
analytically and numerically. The main parameters that control the scaling laws are the relative
density contrast, K , Eq. (13), and the ratio of entrainment velocity components, A, Eq. (23). The
cases of K � 1 and K � 1 correspond to strong and weak thermals, respectively, while A � 1 and
A � 1 describe the flow- and thermal-dominated entrainment, respectively.

For K � 1 Eqs. (18) and (19) reduce to

F1(y) ≈ 3
ve

R0
y2/3, (24)

F2(w, F1) ≈ 3

4
gK − 9

32

CD

R0

w2

y1/3
− w

y
F1 (25)

with ve ≈ aw + Q/y4/3, Eq. (21). For the case A � 1 ve = aw and we recover γ = δ = 1/2 and
η = θ = 1/4, Eq. (1), which corresponds to the conventional BMT scaling. By virtue of similar
arguments we arrive at γ = 4/5, δ = 1/5, η = 3/10, and θ = 1/5 for A � 1 (see the Appendix for
details).

For the regime of K � 1 Eqs. (18) and (19) change to

F1(y) ≈ 3

2

K0

R0

ve

y1/3
, (26)

F2(w, F1) ≈ 3g − 9

8

CD

R0

w2

y1/3
− w

y
F1 (27)

with ve ≈ a w/K1/2 + QKν/y4/3, Eq. (21). Similar to the previous case we consider two limits,
A � 1 and A � 1, and arrive at different values of exponents: γ = 2, δ = 1/8, η = 0, and θ = 1/4
for A � 1 and γ = 2, δ = 4/5, η = 0, and θ = 1/5 for A � 1.

Table I summarizes the scaling laws describing the evolution of buoyant thermals under different
conditions defined by K and A. The first row in the Table I shows the well-established scaling
originating from the BMT model and the remaining rows our derived scaling.
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TABLE I. Scaling law exponents, Eq. (1), for different conditions of the buoyant thermal evolution derived
analytically. Parameters K and A are defined in Eqs. (13) and (23), respectively. ‡Without the drag force
η = 2/5 and γ = 7/5. †Assuming constant thermal diffusivity (ν = 0); for temperature-dependent thermal
diffusivity θ = (2 + ν )/(8 + 3ν ) and δ = 1/(8 + 3ν ) [see Eq. (A18) in Appendix A for details].

Conditions η γ θ δ

K � 1 and A � 1 1/4 1/2 1/4 1/2
K � 1 and A � 1 3/10‡ 4/5‡ 1/5 1/5
K � 1 and A � 1 0 2 1/5 4/5
K � 1 and A � 1 0 2 1/4† 1/8†

IV. RESULTS AND DISCUSSION

Our analytical predictions summarized in Table I have been validated by numerical solutions and
available experimental data.

First-order nonlinear ordinary differential equations, Eqs. (16) and (17), with the entrainment
velocity given by Eq. (21), were solved via Runge-Kutta discretization with parameters from the
range that supports different scaling laws (Table I). The following constants and parameters were
used: Ta = 278 K, pa = 101.3 kPa, a = 0.25 [13], α = 3.43 1/K [39], CD = 0.47 (for a bubble at
moderate velocities) [1,37], ν = 0, and β0 = 4 × 10−6 m2/(s K) [40,41]. The numerical simulations
shown in this section assumed K0 = 0.1 for weak thermals and K0 = 344 for strong thermals.

The continuous line (“1”; see the figure legend) in Fig. 2 displays the log-log plot of radius,
R(t ) [Figs. 2(a) and 2(c)], and elevation, Z (t ) [Figs. 2(b) and 2(d)], of the transient behavior of the
buoyant thermal. Weak thermal gradients, K0 � 1 [Figs. 2(a) and 2(b)], lead to a scaling, δ = 1/5
and γ = 7/5 (dashed line “2”), before it changes to the BMT regime (dotted line “3”). Assuming
K0 � 1 (strong thermal gradients) [Figs. 2(c) and 2(d)] three scaling regions have been observed. At
low timescales, initially another new regime can be seen (dash-dotted line “2”) before the scaling
manifests the same behavior (dashed line “3”) as for the weak thermals, K0 � 1 [Figs. 2(a) and
2(b)]. This region (dash-dotted line “2”) reveals a very small scaling for the radius of the buoyant
thermal (δ = 1/8) and an accelerated rise (γ = 2) similar to an accelerated bubble rise in a fluid.
A BMT region (dotted line “4”) is again observed as the last regime during the thermal’s evolution.
Figure 3 displays the extracted power law exponents for the temporal evolution of the elevation and
radius calculated as a derivation of the log-log dependence. The thick lines represent the numerical
solution, and the thin lines are guides to the eye that indicate the scaling values derived analytically.
The results show the transition between the different scaling regions depending on the density
contrast between the thermal and the ambient environment. The scaling γ = 4/5 in Table I is
not shown in Figs. 2 and 3, but it can be calculated numerically by assuming A � 1. The plots
of numerical solutions for K � 1 and A � 1 (not presented here) are also in agreement with the
analytical prediction.

Figure 4 shows the numerical simulation of radius and elevation of the thermal as a function of
the total buoyancy. Power laws have been calculated for two regions of the initial density contrast,
K0 � 1 and K0 � 1 (indicated by the asymptotes). At large timescales (continuous line) irrespective
of the initial density contrast, K0, the scaling agrees with the BMT model. However, at short
timescales (dashed line) our model revealed scaling regimes θ = 1/5 and η = 2/5 for K0 � 1 and
θ = 1/4 and η = 0 for K0 � 1. The scaling η = 3/10 derived analytically for K � 1 (Table I)
can also be seen in the numerical simulation by assuming A � 1 (not shown here). The plots
of numerical simulation for K � 1 and A � 1 have also been omitted here, but they are also in
agreement with the analytical predictions shown in Table I.

The presented scaling laws for the evolution of convective buoyant thermals have been validated
by published data. Figs. 5 and 6 display the transient behavior of the elevation and/or radius of a
thermal generated by a high-fidelity simulation with a total energy released equal to 3.6 × 1016 erg
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FIG. 2. Temporal dependency of the radius (a), (c) and elevation (b), (d) of a buoyant thermal in a log-
log plot. The two top and two bottom graphs assumed an initial density contrast of K0 � 1 and K0 � 1,
respectively. The lines on the plot are referred to also by numbers in the main text; see the legend.
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FIG. 3. Temporal dependency of power law exponents for elevation (γ ) and radius (δ) of a buoyant thermal
in a log-log plot for weak and strong thermal: (a) K0 � 1, (b) K0 � 1 [see Eq. (1)].
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FIG. 4. Numerical simulation of the dependency of radius (a) and elevation (b) of the buoyant thermal
on the total buoyancy. Two regions of the initial density contrast, K0 � 1 and K0 � 1, for short and large
timescales are shown in a log-log plot.

[35] and experimentally by a nuclear explosion with an estimated yield of 8 × 1020 erg [42]. The
open circles (“1”) represent the published data, and the dashed line (“2”) and the dotted line (“3”)
are a least-squares linear fit. The scaling exponents in the opposite limit of the extremely strong
thermals (dashed line “2”) confirm our derived scaling laws, δ = 1/5 and γ = 7/5 (Fig. 5) and
γ = 4/5 (Fig. 6) valid for weak thermals, K � 1. According to the presented model, a scaling of
4/5 is observed when a drag force is included in the model and a scaling of 7/5 without the drag
force. Thus the experimental data set shown in Fig. 6 corresponds to the scenario with stronger drag
than the data from [35] (Fig. 5). This can be due to the relatively large ratio of the energy released in
the environment which is about 2 × 104. It is expected that stronger explosions would demonstrate
a larger drag due to higher upward velocity [43].

The value of K0 for the two data sets presented in Figs. 5 and 6 was estimated from the
temperature T0 and Eq. (13). For Fig. 5 T0 = 1500 K and Ta = 298 K [35]. This leads to K0 ≈ 4.
For the nuclear blast T0 ≈ 150 000 K [30], and this leads to K0 ≈ 500. From these estimations it
follows that Figs. 5 and 6 correspond to the cases K0 ≈ 1 and K0 � 1, respectively.
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FIG. 5. Temporal evolution of the radius (a) and elevation (b) of a buoyant thermal in a log-log plot obtained
by a simulation [35] and theoretical predictions, Eq. (1) and Table I. The lines on the plot are referred to also
by numbers in the main text; see the legend.
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FIG. 6. Transient behavior of the elevation of a buoyant thermal in a log-log plot originating from an
atmospheric nuclear test [42] and theoretical predictions, Eq. (1) and Table I. The lines on the plot are referred
to also by numbers in the main text; see the legend.

The well-established BMT region has been also observed (dotted line “3”). The deceleration of
the thermal at very high altitudes in Fig. 6 is due to the change of the surrounding atmosphere (den-
sity). This effect is outside of the scope of the present study [36]. Other examples of experimental
data found in the literature revealed just the BMT scaling exponents, Eq. (2), most likely due to the
lack of data availability at the early stage of the buoyant process [42–47].

V. CONCLUSIONS

To summarize, it has been shown that the evolution of convective thermals generated by a rapid
energy release in the environment can exhibit a rich variety of scaling laws that cannot be explained
by the conventional BMT model employing the Boussinesq approximation [11–13]. The presented
study includes the extreme case when density inside the thermal is negligible in comparison with
the environmental density. Our set of scaling laws, Eq. (1), with the value of exponents given in
Table I have been derived and favorably validated with the limited data set available in the literature
[35,42]. It is worth pointing out that these values are different from the values corresponding to
ballistic motion of the thermal (γ ≈ 1), and, as in the conventional BMT theory, cannot be explained
as a simple compensation of drag with buoyancy, which is a typical scenario in atmospheric physics
when entrainment fluxes can be disregarded [48].

Our scaling laws can also provide important insights into the scaling properties of strong
convective turbulence (e.g., boiling fluid or solar atmosphere [49]). The latter can be conceptualized
as a random ensemble of convective thermals [50], and this allows us to employ expressions in
Eq. (1). Indeed, if we introduce scales of velocity components parallel and perpendicular to the
horizontal boundary, v⊥ ∝ dZ/dt and v‖ ∝ dR/dt , respectively, then from Eq. (1) we can arrive at
the following relations:

v⊥ ∝ Bη/γ

0 Z1−1/γ , (28)

v‖ ∝ Bθ+(η/γ )(1−δ)
0 Z (δ−1)/γ . (29)

The velocity components relate to Z being the distance from the underlying hot surface, which is
also considered as the source of thermals. We observe that depending on regimes identified above
(different values of γ , δ, η, and θ from Table I) this scaling is different.
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One of the future options to extend these results is to map the gross parameters of an extremely
strong thermal with the parameters of a toroidal vortex, in line with the conventional approach for
the Boussinesq thermal [13,19,20]. This may provide interesting insights into the internal structure
of extremely strong thermals and their long-term evolution.

We think that the presented results may be useful for understanding extreme events in the envi-
ronment associated with generation of strong plumes and thermals (e.g., inferring their parameters
from remote measurements) and validation of more complex numerical models.

APPENDIX: ANALYTICAL MODEL DERIVATION

The analysis below explores the different regimes of thermal evolution. Similar studies in the
context of cloud evolution have been presented in [1,48].

1. Weak thermals (K � 1)

Under condition K (t ) � 1 we obtain from Eqs. (18), (19), and (21) the following system of
equations:

F1(y) ≈ 3
ve

R0
y2/3, (A1)

F2(w, F1) ≈ 3

4
gK − 9

32

CD

R0

w2

y1/3
− w

y
F1, (A2)

and

ve = ve1 + ve2 ≈ a w + Q

y4/3
. (A3)

The function F2, Eq. (A2), is the second-order polynomial of w. Initially, F2 ≈ (3/4)gK since
the rising velocity, w, is very small near y = 1. With increasing w, F2 will eventually reach a point
when F2 = 0. This condition identifies two roots from which only one is positive

w = −ve2

2G
+

[
v2

e2

4G2
+ (gK0/4)(R3

0/R2)

G

]1/2

, (A4)

where G = (3CD/32) + (ve1/w), and ve1 and ve2 are defined in Eq. (A3).
The next step involved a simplification that employs different relative contributions of terms

in Eq. (A3). We use Eq. (A4) for the estimation of the characteristic value of w. For A � 1 [see
Eq. (23)], when the entrainment is controlled by the upward velocity, ve ≈ ve1 ≈ aw, Eq. (A4) can
be modified to

w ≈
[

(gK0/4)(R3
0/R2)

(3/32)CD + a

]1/2

, (A5)

and the solution of Eq. (16) with F1 shown in Eq. (A1) leads to

R(t ) = R0(1 + t/τ )1/2, (A6)

where τ = [R2
0/(2a)][(π/2)(αTaCD/B0)]1/2. By assuming t/τ � 1 and solving w = dZ/dt with w

from Eq. (A5) we arrive at

R(t ) ∝ B1/4
0 t1/2, (A7)

Z (t ) ∝ B1/4
0 t1/2. (A8)

Equations (A7) and (A8) are well-known scaling laws of the BMT theory [11–13].
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For the case A � 1 the entrainment velocity is dominated by the thermal flux, ve ≈ ve2 ≈ Q/y4/3,
the upward velocity in Eq. (A4) becomes

w ≈ 16

3

QR4
0

CDR4

[
−1 +

(
1 + 3

32

gCDK0R6

Q2R5
0

)1/2
]
, (A9)

and the solution of Eq. (16) with F1 from Eq. (A1) takes the form

R(t ) = R0(1 + t/τ )1/5, (A10)

where τ = R0/(5Q). For t/τ � 1, taking into account Eqs. (12) and (22) and solving w = dZ/dt
with w from Eq. (A9) we recover

R(t ) ∝ B1/5
0 t1/5, (A11)

Z (t ) ∝ B3/10
0 t4/5. (A12)

For the case with a negligible drag force applicable to short timescales when w is still small the
scaling for the elevation will change to

Z (t ) ∝ B2/5
0 t7/5, (A13)

and the scaling for radius remains unchanged, Eq. (A11).

2. Strong thermals (K � 1)

Similar analysis can be conducted for the case of strong thermals, K (t ) � 1. The original
equations derived from Eqs. (18), (19), and (21) take the form

F1(y) ≈ 3

2

K0

R0

ve

y1/3
, (A14)

F2(w, F1) ≈ 3g − 9

8

CD

R0

w2

y1/3
− w

y
F1, (A15)

and

ve = ve1 + ve2 ≈ a w

(
1

K

)1/2

+ Q
Kν

y4/3
. (A16)

For A � 1 when the entrainment is dominated by the thermal flux, ve ≈ ve2 ≈ QKν/y4/3, the
solution of Eq. (16) with F1 displayed in Eq. (A14) yields

R(t ) = R0(1 + t/τ )1/(8+3ν), (A17)

where τ = [2/(8 + 3ν)][R0/(QK1+ν
0 )]. By assuming t/τ � 1, reformulating τ by taking into ac-

count Eqs. (12) and (22) and solving Eq. (17) with F2 displayed in Eq. (A15) we derive scaling
laws

R(t ) ∝ B(2+ν)/(8+3ν)
0 t1/(8+3ν), (A18)

Z (t ) ∝ t2. (A19)
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Let’s assume the case of the entrainment proportional to the upward velocity,
ve ≈ ve1 ≈ awK−1/2 (A � 1), where w can be estimated from F2 = 0,

w ≈
(

2
g

a

R0

K1/2
0

)1/2

y5/12. (A20)

This regime occurs at a stage of the evolution of the thermal before the subsequent transition to
the conventional BMT regime, Eqs. (A7) and (A8). Solving Eq. (16) with F1 shown in Eq. (A14)
leads to scaling

R(t ) = R0(1 + t/τ )4/5, (A21)

where τ = (8/5)[R0/(2ga)]1/2K−1/4
0 . Considering t/τ � 1 and Eqs. (12) and (22) the radius of the

buoyant thermal can be written as

R(t ) ∝ B1/5
0 t4/5. (A22)

The scaling laws for the elevation of the thermal remain the same as for the case of A � 1,
Eq. (A19).

The values of exponents in Eqs. (A7), (A8), and (A11) to (A13), (A18), (A19), and (A22)
correspond to the scaling laws observed at different regimes of the thermal evolution (weak and
strong thermals, and the flow- and thermal-dominated entrainment). They are summarized in Table I.
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